منابع مشابه
Generalised Rudin-Shapiro Constructions
A Golay Complementary Sequence (CS) has Peak-to-Average-Power-Ratio (PAPR) ≤ 2.0 for its one-dimensional continuous Discrete Fourier Transform (DFT) spectrum. Davis and Jedwab showed that all known length 2m CS, (GDJ CS), originate from certain quadratic cosets of Reed-Muller (1,m). These can be generated using the Rudin-Shapiro construction. This paper shows that GDJ CS have PAPR ≤ 2.0 under a...
متن کاملGolay-Davis-Jedwab Complementary Sequences and Rudin-Shapiro Constructions
A Golay Complementary Sequence (CS) has a Peak-to-AveragePower-Ratio (PAPR) ≤ 2.0 for its one-dimensional continuous Discrete Fourier Transform (DFT) spectrum. Davis and Jedwab showed that all known length 2 CS, (GDJ CS), originate from certain quadratic cosets of Reed-Muller (1,m). These can be generated using the RudinShapiro construction. This paper shows that GDJ CS have a PAPR ≤ 2.0 under ...
متن کاملOn Sums of Rudin-shapiro Coefficients Ii
Let {a(n)} be the Rudin-Shapiro sequence, and let s(n) = Σ£=o () and t(n) = I"k=0(-\) a(k). In this paper we show that the sequences {s{n)/ Jn) and {t{n)/ Jn) do not have cumulative distribution functions, but do have logarithmic distribution functions (given by a specific Lebesgue integral) at each point of the respective intervals [γ/3/5, yfβ] and [0, V^] The functions a(x) and s(x) sore also...
متن کاملMoments of the Rudin-Shapiro Polynomials
We develop a new approach of the Rudin-Shapiro polynomials. This enables us to compute their moments of even order q for q 32, and to check a conjecture on the asymptotic behavior of these moments for q even and q 52.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Notes in Discrete Mathematics
سال: 2001
ISSN: 1571-0653
DOI: 10.1016/s1571-0653(04)00188-x